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FLOW OF TWO-PHASE MIXTURES IN A ROTARY MIXER

V. V. Kafarov, A. A. Aleksandrovskii, UDC 532,529.5: 621.929.9
I. N. Dorokhov, and F. G. Akhmadiev

On the basis of a hydrodynamic model of a multivelocity continuum, the flow of miscible ma-
terials over the working surface of a multistage centrifugal (rotary) mixer is investigated, and
the optimal dimensions of the working sections required to obtain a high-quality mixture are
determined.

In the operation of a rotary mixer, a liquid and a highly disperse solid are supplied to the center of the
rotating section of the first stage of the rotor, and layers of the liquid, the forming mixture, and the solid
component flow over the surface of a conical channel. Under the action of centrifugal forces, the solid ma-
terial tends to settle out into the liquid, and then at the edge of the section all this material is dispersed
(Fig. 1). The two-phase medium flows on through successive stages of the rotor, which are similar in con-
struction, where the final redistribution of the components occurs.

The motion of each layer of material over the surface of the spinning rotor is described by the equations
of fluid mechanics; each layer has its corresponding rheological equation of state. The flow of pure liquid is

described by the differential equations
00 ‘% — o0F, - div T,, )

where p? and V, are the density and velocity of the liquid; T is the stress tensor; and F, is the mass force.

The mixture which forms constitutes a two-phase medium and can be described on the basis of the multi-
velocity Rakhmatulin model (if direct collisions and shear strains of the solid particles may be neglected in
comparison with the carrier phase) by the equations [1, 2]

a
g—i‘+v(prl)=0, (2)
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Fig. 1. Flow diagram of miscible materials over work-
ing surface of the rotary mixer.

692
pV,) =0, (3)
o VP
0dVy _ o gP - vt —y, - oF,, _ (4)
dt
dv, .
pzdt E = —a,yP + 1), + p,F;, (5)
TH = YV, - 29 ¥ (6)

The subscripts 1 and 2 denote the liquid and solid phases of the mixture, respectively; )\f and uf are viscosity
coefficients.

The motion of the highly disperse material may be regarded as the motion of a certain continuous medium
with a given rheological equation of state. However, the general problem is extremely complicated in this
case, and therefore it is assumed that the solid material moves in the longitudinal direction with some

averaged velocity ve[04(¢)], where!l varies along the rotor generatrix, and there is no relative motion at the
mixture—solid-phase boundary.

Let 6, be the thickness of the layer of pure liquid, ¢, the thickness of the layers of pure liquid and form-
ing mixture, taken together, and ¢, the thickness of all the layers. The axisymmetric steady flow of miscible
materials is considered in the orthogonal axes xi, x2, x3, related to the rotor (Fig., 1), under the following
assumptions The effective liquid viscosity is sufficiently large; as a result of the large angular veloeity of the
rotor, vxi > v,z; the total thickness of the layers is considerably less than the corresponding radius of the
conical rotor channel, i.e., R> 0,; and the Coriolis force is negligible in comparison with the centrifugal
forces F; and ¥, where [ = ', 6= x* (Fig. 1).

With these assumptions, the fluid-mechanics equations describing the motion of the liquid and two-phase
mixture take the form

o (RT) + 08 =0, ()

x5 R+ fF =0, ®)

5‘-’— (Ruows) + -<Rv0x=)~ ©)
o (R —Fian 4 piFa =0, | (10)
7;-7()—(121,22)-—alg;——fmz+pfxz =0, (11)
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Fig. 2, Comparison of experimental and calculated
data on the total thickness of the layers ¢, and cal-
culated values of ¢, and 64: 1) the system nitropoly-
ether + KCl; q; = 8- 10° kg/sec; gy = 11. 10-3 kg/sec;
w = 104.7 sec-1; 2) glycerin + KCl; q; = 28 - 10~ kg/
sec; q, = 18.2- 107° kg/sec; w = 84 sec~!, where i—2,
i—1, i—0 refer, respectively, to 6,, 64, and §; for
the i-th system (i=1, 2). - 103, m;r. 102, m.

a—(alel,,x) - i_’ (2,Rv152) = 0, (12)
% ox®
f12x‘ " ngxl = O- (13)
— % _aﬂ., = fi2xe = poF e = 0, (14)
oxr?
a , 0
Fyey (0t,RU2) Y (e Rv2.2) =0, (15)
! (16)

Equations (7)-(16) describe the motion of the miscible materials over the rotor surface for any rheologi-
cal law of state of the medium,

According to the hydrodynamics of a multiphase medium, the phase-interaction force f;, in Egs. (4)-(5)
may be written in the first approximation as f, = {(V;—V,), where f = f{x3, 7, d) is the phase-interaction coef-
ficient; 5 is the effective liquid viscosity; and d is the characteristic dimension of the solid particles. Dimen-
sional analysis shows [3] that [f] = M/ L3T: [71=M/LT; and [d]= L. (M, L, and T are the dimensions of mass,
length, and time). This leads to the relation

. .
= — [+ 4 N (17
f 7 @ (o) )

It is obvious from physical considerations that ¢ (0) = 0, @{ay) — © as ay— ay (@ is the "maximum-

packing" concentration of solid particles). The specific form of the function ¢ may be found experimentally.
The simplest first approximation to the function ¢ is

gla,) =4

o (18)

Ol — Oy

Using Eq. (18) in Eq. (17) gives
Al % (19)

&y — 0y
If the effective liquid viscosity 5 is large and the characteristic dimension d of the solid particles is
small, it follows from Eq. (19) that the coefficient f becomes very large beginning with a certain value of @,
Hence it folloes that v, is little different from v,. This makes it possible to neglect inertial forces with
respect to motion for the solid particles in the equations of motion (13)-(14),
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In the equations of motion of the {wo-phase mixture, the pressure arising due to small-scale perturba-
tions is assumed to be zero, since it is associated with particle collisions in the course of their random motion
and is negliglible in comparison with the viscosity of the liquid phase.

In motion of the material over the mixer surface, the determining parameters are the velocity of the
mixture as a whole along the rotor generatrix vy, the rate of settling of the solid particles in the centrifugal

field, the layer thicknesses &;, 6y, and ¢,, and the velocities vyx1 and vyx? Therefore, adding Eqgs. (10)-(15)
in pairs gives the equations

U3 oo,
— Fa =0, (20
® o S(RT2) 4+ 9
1 9 3P
— - —— (RT®)— — L+ pF: =0, 21
R o) 1)
OR (@ v152 + 0U251) e OR (20192 + %y¥sx2) =0 (22}
ox! ox* '

which, together with Eqgs. (7)-(9), are sufficient to determine the desired values vyxi, vy, and vgt and
describe the motion of the material for any rheological law of state of the liquid and the mixture.

Assume further that the rheological state of the liquid and the relation between the components of the
tensors 7ki and eld satisfy the rheological power law

T=—P5, + 2kl 2 e, (23)

which holds for many of the systems treated in mixer devices. Here 6j) is the Kronecker delta; I, = eli{e% is
a scalar invariant of the strain-rate tensor e. Then the flow properties can be characterized by the equations

duy \" 9
wH ) S renee

0 v, \—! Oy,
i _piro ol ~Lob - o F :O’
aa[ ™ ( 3 ) 3 ] “ie

(24)
(Rvoa) T = Rvol) =0,

m—1
_6_ P Oy, avl - oF, =0,
08 a8 a8
where k* is the function giving the concentration of solid phase in the liquid; F; = w°R sino; Fg= ~w’Rcosa;
¢ is the density of the mixture; and k, k*, n, and m are power-law parameters. After integration of (24)

with the following boundary conditions: a) vy; = Vy5 =0 for & = 0; b) v; = vy, 2 = 18 for & = 83 ¢) 8v; /66 = 0
for 0 = &, we will determine the quantities Vors Vog, and vy

o= () g [ e et
n+ 17\ Fp} 3

. p?F,(‘So——G) T pF (8, —8;) 'ﬂ;l—}
k k '

o ()[Rt e e,k
%ol =~ BoF, k "( oFT

X[PFI(51_‘60)+9?F160 :l,lT[pFl’(ax o)+90F 6]6

k k

[ n N[ B \TT PIFS + pF (8, — &) 72!
+(2n+1>(9°F){[ k ] ‘
11

__[P?Fl(ao—s)‘f‘PFl(Gf‘éo)]}M—n-l n )( R )( k )!
3 +(n+l oF; )\ o7F;

y [ PIF7 8 + pFi(8] — &) ”[ PYFSy + pF (8, —8,) ]"{L
k )
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_ [ POF, (8, — 8) + oF, (8, — 60)}"—4,—21-}

%
mt mi1
o= ( T ) (—"kf')% (B8 ™ — (@ — 8™ ]
+( n )( k ){[ sz(61—50)+p?F150]#
n+ 1]\ 0F, k
_[ pF (8, — &) ]n—t—l—}'
k

where &, 6}, and F) are derivatives with respect to I.

The unknowns &,, 64, and 6, were determined using the condition of constant flow of the solid (g,) and
liquid (q,) components and the mechanism of change in the thickness &;

8, [
g 2nrp0,,dd + 5 2ara,plvdé = gy, (25)
6 6y )
8,
f 2mrplor,0,d8 + 2murp, [0, (8,)] (5, — 8;) = ¢ (26)
[N
& _ =W ooy -
di g ()

&*(p} — p}) wr
18y
cles in the centrifugal field, which is determined experimentally; ¢ ¢ is a factor determined by the shape of
the solid particles; Py, 18 the bulk density of the solid phase; and r = R—§ cos . Further, Egs. (25) and (27) were
used to obtain an ordinary differential equation of the form dy/d! = £(l, 60, ¥), where y = (6 .~ 0 P /0%). This
equation and Eq. (27) were solved simultaneously by the Runge—Kutta method, and ¢, was determineé from
Eq. (26). Comparison of the calculated and experimental data showed good agreement (¥ig. 2: the continuous
lines show calculated data, while I and II correspond to experimental values of d,); the maximum discrepancy
does not exceed 18-20%. By solving this hydrodynamic problem, the length of the generatrix of the first rotor
stage which is optimal for high-quality mixing can be found for one of the following conditions: a) 6, = 0; b)
0y—04 = 0; ) 64y 0;—0), and 0,—6; are of the same order as the dimensions of the agglomerates of solid
particles, Calculations for conditions a), b), and c) showed that mixtures of highly disperse materials and
viscous liquids are best prepared in multicascade rotors with an extended first stage.

where W = @, exp(— 4.3699a — 4.557x,)cos o is the collective rate of settling of the solid parti-

The motion (flow) of the two-phase mixture in the remaining stages of the rotor may be described by
Egs. (10)-(16). It is necessary to determine the longitudinal component of the mixture velocity v; and the
total thickness of the layers 6, which are important operating characteristics of the mixer. '

From Egs. (13) and (20) and the condition of constant phase flow rates

a 9y, \"™—1 oy,
O [\t 00] \ p o, (28)
66[ '(aa) ao]+p ’
k
pF+A— (vy—uvy) =0, (29)
d* ay—ay
Oy 5;
s. 2nra,plo, dS + J 25rpla,0,d0 = ¢y + G (30)
o ¢
. 0,
( 2nurpla,,dd = ¢,. (31

0

Integrating Eq. (28) with the boundary conditions 8v;/85 = 0 when ¢ = ¢, and v; =0 when ¢ = 0 leads to an
expression for the velocity vy,

my4-t

o e [ - e e @
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Further, Eqs. (29)-(31) give

. ’ to2my+1 2 9
F\is o= d* (otyg — 2, )pY %00 F +4
(P + 03] ( m ’Z- 1 ) (%’«71) 0 : AI: — !52= ql?m - (33)
(oY 1 .
' 2m,+; »
(p?ocl) ( m ) ( pF‘)”‘l 8™ = D , (34)
: om, + 1)\ & 2nr

from which 6,(1) and a4(¢) are determined.
Note that if pure liquid flows over the rotor surface, Eq. (32) becomes the solution obtained in [4].

It is also possible to use the Rakhmatulin interpenetration model, together with experimental data, to
calculate the flow of materials in other mixers, centrifuges, centrifugal diffuser-atomizers, etc.

NOTATION

Vi, 055 Q55 velocity, mean density, and concentration (by volume) of the j-th phase; 1%, true density of the
j-th phase; T, liquid stress tensor; Fj, mass force acting on the j-th phase; 7}(1 and , Stress and strain-
rate tensors; f;,, phase-interaction force; P, pressure; R, radius of conical rotor channel; xi, orthogonal
coordinates; ., V, density and velocity of mixture; , effective liquid viscosity; d, characteristic dimension
of solid particles; w, angular velocity of rotor; k, k*, n, m, m,, kf, power-law parameters for liquid and
mixture; o, semivertex angle of conical channel; W, collective rate of settling of solid particles; &g, factor
determined by the shape of the solid particles; qj, mass flow rate of j-th phase; r = R—¢é cosa, distance from
axis of rotor rotation to an arbitrary point; p,, bulk density of solid phase.
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CHARACTERISTICS OF FLOW BETWEEN A ROTATING
AND A STATIC DISK IN THE PRESENCE OF
RADIAL FLOW

L. P. Safonov, V. M. Stepanov, UDC 532.526.75
and M. I. Drozdov

An improved method is proposed for the calculation of the flow in the gap between a rotating and
a static disk in the presence of radial flow. The algorithm of the solution is realized on a Nairi-
2 computer,

To solve a number of problems associated with the hydraulic circulation section of a multistage turbine
with disk rotors and, in particular, to calculate the axial forces and temperature state of the rotors of a
steam turbine, it is necessary to know the radial distribution of the pressure of the medium in the gap between
a rotating disk and the corresponding static element (diaphragm, casing). An approximate solution of this
problem was obtained in [1] and subsequently refined in [2-4]. In [5], there was further development of the
method of calculating the pressure distribution along the disk radius in the presence of radial flow, but the
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